
Algebraic Data Type: an essential concept

for safe and compositional code

Sol Kim

December 6, 2017

Abstract

Many of advanced type systems have been introduced to practical languages. An

algebraic data type is one of the fundamental materials for most of the advanced type

systems. Still, an algebraic data type can be used to provide more safety and composi-

tionality as itself, not as a part of the advanced type systems. A classic, but ironically

a radical example, that shows advantages and essence of an algebraic data type, is

inductively defined primitive data types. An algebraic data type can provide the safe

and compositional programming development environments not only while building

programs from a scratch but also while refactoring large-scale programs. On the other

hand, non-algebraic data type languages—most of the conventional industrial languages

such as C, C++, Java—use tricks and language-dependent methods to obtain similar

environments of an algebraic data type languages, but most of those highly depend on

developers’ skills. Fortunately, there are interesting research and practical examples

that try to infuse advantages and essence of an algebraic data type to non-algebraic

data type languages. Likewise, various programming patterns, tricks have been intro-

duced for conventional industrial languages to obtain safety and compositionality, in the

meanwhile, modern languages embrace an algebraic data type as a primitive feature.

Undoubtedly an algebraic data type is an essential concept for safe and compositional

code.

Keywords: algebraic data type, programming language

Advanced type systems can guarantee more safe and compositional programming environ-

ments than conventional type systems. As well known, a type safety is one of the safety

baselines that guarantees programs run safely. Statically typed languages validate type

safety during compile time, and programs which passed a type checker never crash by type

errors while running. Unfortunately, type checkers are inevitably not enough to cover every

case of programs but some advanced type systems can cover more safety than conventional

type systems. Proof assistants, which is one of the extreme examples of advanced type sys-

1

tems, even can represent and prove specifications of programs formally, and the languages

are general and expressive enough to encode every computational logic.

Many of advanced type systems have been introduced to practical languages. Generalized

algebraic data types (GADTs) have been introduced several practical functional languages

as a primitive data type[3, 5]. GADTs make languages possible to express more invariants of

code than conventional data types. The data type can encode invariants into types that are

used to be implemented as runtime code to satisfy specifications of code, and the invariants

are guaranteed by a type checker even before running it by definition of a type system. A

typical example of uses of the data type is implementing DSL and its evaluator with robust

type safety. Dependent types are another example of an advanced data type. Coq and

Idris are purely functional languages with dependent types[2, 4], and the data type even

can be defined depending on values. Values can be a part of types, and a type checker will

check type safety with the types while compiling it. More detailed specifications of code

could be defined as types using the data types, such as types that include list’s length, types

that include tree’s shape, types that include whether a number is even or odd, and others.

Thus, logic which are typed with dependent types could be certified by a type checker, and

the certified logic never go wrong after compiled. Some of newly introduced advanced type

systems have a specific purpose than the traditional general purpose type systems such as

GADTs, dependent types. Rust has a distinctive type system that checks latent errors,

which can be happened in parallel and concurrency programming environments such as race

conditions, during compile time[7].

An algebraic data type is one of the fundamental materials for most of the advanced type

systems. Crucial parts of type theory have been based on a correspondence between types

and mathematical logic[9]. Logical disjunction (∨) and logical conjunction (∧) are the most

basic materials of mathematical logic. Naturally, in the sense of correspondence between

types and logic, types must have something that is dual of the two logical operators, and

an algebraic data type satisfies the role. A sum type (A + B) and product type (A × B)

of the data type is the dual of logical disjunction and logical conjunction respectively[10].

Besides the duality, more connections between types and mathematical logic have been

discovered and introduced to languages. As consequence of observing and evolving type

systems through the lens of mathematical logic, type systems have been able to be improved

to right directions; safe and compositional programming environments with the mathematical

basis. But, basically, to stack connections between types and mathematical logic from the

most primary correspondence—∨,∧ and +,×—to a higher dimension of correspondences,

an algebraic data type is an essential feature.

Still, an algebraic data type can be used to provide more safety and compositionality as

itself, not as a part of the advanced type systems. A sum type and product type is general

and expressive enough to composite complex data structures. It means that languages, which

provide an algebraic data type as a primitive data type, easily obtain compositionality and

its type safety. Induction, also, well fits with an algebraic data type, because base cases and

inductive cases of an induction can be defined through an algebraic data type. A combined

way of composing data structures using the two basic mathematical materials is general and

expressive enough to represent highly complex data structures. Even the method can express

2

type ’a list = Nil | Cons of ’a * ’a list

let (::) : ’a → ’a list → ’a list = fun x l → Cons(x, l)

let rec zip : ’a list → ’b list → (’a * ’b) list = fun l1 l2 →
match l1, l2 with

| Cons(x, l1’), Cons(y, l2’) → (x, y)::(zip l1’ l2’)

| Nil, Nil | Nil, _ | _, Nil → Nil

Figure 1: Inductively defined natural number using algebraic data type, and a simple add

function of it.

from natural numbers and its operators to general purpose languages[8].

A classic, but ironically a radical example, that shows advantages and essence of an

algebraic data type, is inductively defined primitive data types. An inductively defined

list is a classic example of an inductively defined data structure using an algebraic data

type.

type ’a list = Nil | Cons of ’a * ’a list

A zip function in figure 1 shows that how to handle algebraically and inductively defined

data types. The function consists of destructions and constructions of terms based on the

type list definitions. A program logic, which handles algebraically and inductively defined

data types, should handle every case of data types. A pattern matching operator, like in

figure 1, will check that destruction logic cover every case of data type during compile time.

Therefore, most of the logic has to be straightforwardly implemented to follow its type

definitions when destructing terms. Furthermore, specifications of functions are naturally

represented and exposed by destruction and construction logic. The function zip zips two

lists until an opposite list isn’t an empty list, and the specification is defined by destructing

logic without control flow statements such as if-else. It means that the specification is

guaranteed by a type checker even before running it, unlike runtime code. Likewise, even

language isn’t a proof assistant, well-designed data structures and its functions based on an

algebraic data type make us possible to build more safe and compositional code.

An algebraic data type can provide the safe and compositional development environ-

ments not only while building programs from a scratch but also while refactoring large-scale

programs. Modifying already defined data structures is a complicated and dangerous work

for large-scale programs. Tracking influenced points by changes of data structures is an ex-

tremely difficult work for large-scale programs. But, because most of the logic that handles

an algebraic data type consist of destruction and construction logic based on data types,

every influenced point is relatively straightforwardly exposed by logic itself. Furthermore,

every destruction and construction logic is checked by a type checker while compiling code,

so even if developers miss some points that are affected by changes, a compiler will notice

the points missed by developers.

3

interface SumOfAB { }

class A implements SumOfAB { }

class B implements SumOfAB { }

class C { }

class ProductOfABandC {

public SumOfAB ab;

public C c;

}

Figure 2: A Java version of a sum type and product type

On the other hand, non-algebraic data type languages—most of the conventional indus-

trial languages such as C, C++, Java—use tricks and language-dependent methods to obtain

similar environments of an algebraic data type languages, but most of those highly depend

on developers’ skills. Obviously, because a concept of an algebraic data type is simple, non-

algebraic data type languages can easily encode the data type. Figure 2 shows a trivial

way of expressing an algebraic data type using Java. An interface-implementation hierarchy

seems well covering a sum type of an algebraic data type, but uses of the encoded algebraic

data type is not, strictly saying, type-safe. As we have seen in figure 1, pattern matching

operators of functional languages can destruct a sum type term into its cases, but in case

of most of the non-algebraic data type languages don’t have those kinds of operators. For

example, in Java, a type of term is defined by an interface, than the term should be

re-assigned into its actual type when developers want to use the term as the actual type.

It is unavoidable to use runtime-checked cast like instanceof in Java, but type checkers

don’t handle the runtime-checked cast operators during compile time, in other words, the

method is not type-safe. As an alternative method against runtime-checked cast operators,

developers have encoded data structures that originated in algebraically defined data struc-

tures mostly in functional languages. A following algebraically defined option type is a

trivial data structure in functional languages.

type ’a option = None | Some of ’a

A Java standard library provides a class Optional to mimic the option type in functional

languages.

public class Optional<T> {

private T value;

public boolean isPresent() ...

public T get() ...

public T orElse(T other) ...

/* and other auxiliary functions */

}

The class has various helper functions that handle Optional terms, but many of the helper

functions even consist of unstraightforward implementation details to satisfy specifications.

4

trait SumType

case class A() extends SumType

case class B() extends SumType

object SumType {

def exampleFun(sumData: SumType): Any =

sumData match {

case (a: A) => // a variable a is casted as a type A

case (b: B) => // a variable b is casted as a type B

}

}

Figure 3: A Scala (non-Dotty) version of a sum type

A problem of those kinds of workarounds is that every virtue, i.e. type safety, compositional-

ity, complexity, depends on developer’s level of understanding about design patterns, tricks,

and language-dependent features.

Fortunately, there are interesting research and practical examples that try to infuse

advantages and essence of an algebraic data type to non-algebraic data type languages.

Kennedy and Russo [6] show how to express GADTs using object oriented language fea-

tures. Despite a method in the research can’t avoid using redundant runtime-checked casts,

the research provides an appropriate way to express GADTs using generics, subclassing, and

other object orient languages’ type system features. Scala before Dotty haven’t supported

an algebraic data type explicitly, but the language is capable of encoding the data type us-

ing interface-implementation hierarchies, and a pattern matching operator of the language.

Figure 3 shows how Scala code destructs and casts safely without runtime-checked cast op-

erators. Unlike Java and other object oriented languages, Scala provides a pattern matching

operator as a native feature. The pattern matching operator of Scala also checks whether

code covers every possible case of the target object during compile time, hence the method

is definitely safer than runtime-checked cast logic.

Likewise, various programming patterns, tricks have been introduced for conventional

industrial languages to obtain safety and compositionality, in the meanwhile, modern lan-

guages embrace an algebraic data type as a primitive feature. A certain strong point of

newer languages is that the languages are outcomes of improvement from older languages.

Interestingly, famous modern industrial languages such as Rust, Swift, and Scala embrace

an algebraic data type as a primitive data type. In the case of Scala, after eight years of

verification works for type soundness of the language’s type system[1], they introduced a

new compiler called Dotty and the compiler provides a sum type as a primitive data type.

As consequence of the remarkable work, a sum type of Scala is come out to the world with

verified type soundness. Besides the language, Rust, Swift, and others have a sum type and

a pattern matching operator. Those languages are evidence that an algebraic data type and

pattern matching operator are now essential features for languages. On the other hand, in

case of a product type, some of the languages provide the type as a native type, i.e. tuple,

5

but some of the languages, especially object oriented languages, don’t. But, in case of object

oriented languages, a product type is relatively easy to express than a sum type using basic

programming language materials.

Undoubtedly an algebraic data type is an essential concept for safe and compositional

code. An expression power of an algebraic data type is strong enough to encode most of

data structures from the most primitive ones to complex ones. The concept of the data type

is based on basic mathematical materials, thus, the concept is relatively simple and intuitive

than complex programming patterns, tricks. The concept has been used very long time as a

basic material to obtain benefits that are mathematically proven in a specific area such as

proof assistants and functional languages. Conventional industrial languages hadn’t savored

the concept, but eventually, with various implementation details the data type has been

infused into the conventional languages. In case of modern languages, they have introduced

an algebraic data type as a primitive feature of languages. Likewise, the data type is already

an essential feature to build safe and compositional code.

References

[1] Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016.

The essence of dependent object types. In A List of Successes That Can Change the

World. Springer, 249–272.

[2] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language:

Design and implementation. Journal of Functional Programming 23, 5 (2013), 552–593.

[3] James Cheney and Ralf Hinze. 2002. A lightweight implementation of generics and

dynamics. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell. ACM, 90–

104.

[4] Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic

Introduction to the Coq Proof Assistant. MIT Press.

[5] Jacques Garrigue and JL Normand. 2011. Adding GADTs to OCaml: the direct ap-

proach. In Workshop on ML.

[6] Andrew Kennedy and Claudio V Russo. 2005. Generalized algebraic data types and

object-oriented programming. ACM SIGPLAN Notices 40, 10 (2005), 21–40.

[7] Nicholas D Matsakis and Felix S Klock II. 2014. The rust language. In ACM SIGAda

Ada Letters, Vol. 34. ACM, 103–104.

[8] Christine Paulin-Mohring. 2015. Introduction to the calculus of inductive constructions.

(2015).

[9] Morten Heine Sørensen and Pawel Urzyczyn. 2006. Lectures on the Curry-Howard

isomorphism. Vol. 149. Elsevier.

[10] Philip Wadler. 2015. Propositions as types. Commun. ACM 58, 12 (2015), 75–84.

6

